Best Practice - How to create 3D curves & useful equations to create forms

Partner Channel / Creo Parametric

This guide shows equations that can be used to create curves and how to creating a Curve from Equation in Creo Parametric.

Share on Social Networks

Share Link

Use permanent link to share in social media

Share with a friend

Please login to send this presentation by email!

Embed in your website

Select page to start with

1. Best Practise How to create 3D curves and useful equations to create forms

2. EQUATIONS – Equations that can be used to create curves and more in Creo Tutorial how to create 3D - curves: https://learningconnector.ptc.com/content/tut - 394/creating - a - curve - from - equation Cartesian Coordinates: x, y, & z The z variable is not necessary, but when used will give the curve that extra dimension. If in doubt, try z = t*10. Sine Cartesian coordinates x = 50 * t y = 10 * sin (t * 360 ) Rhodonea Cartesian coordinates theta = t * 360 * 4 x = 25 + (10 - 6) * cos (theta) +10 * cos ((10/6 - 1) * theta) y = 25 + (10 - 6) * sin (theta) - 6 * sin ((10/6 - 1) * theta) Involute Cartesian coordinates r = 1 ang = 360 * t s = 2 * pi * r * t x0 = s * cos ( ang ) y0 = s * sin ( ang ) x = x0 + s * sin ( ang ) y = y0 - s * cos ( ang ) Logarithmic Cartesian coordinates z = 0 x = 10 * t y = log (10 * t +0.0001 )

4. Talbots /* "c" is a scaling variable. c=10 a= cos (t*360) b=sin(t*360) x=C*a*(1+exp(2)*(b^2)) y=C*b*(1+exp(2)*(b^2 )) Cylindrical Coordinates: r, theta, & z Spiral Cylindrical coordinates r = t theta = 10 + t * (20 * 360) z = t * 3 Circle Spiral Column Cylindrical coordinates theta = t * 360 r = 10 +10 * sin (6 * theta) z = 2 * sin (6 * theta) Helical Wave Cylindrical coordinates r = 5 theta = t * 3600 z = (sin (3.5 * theta - 90)) +24 * t Basket Cylindrical coordinates r = 5 + 0.3 * sin (t * 180) + t theta = t * 360 * 30 z = t * 5 Disc Spiral 2 Cylindrical coordinates R = 50 + t * (120) Theta = t * 360 * 5 Z = 0 Apple Cylindrical coordinates a = 10 r = a * (1 + cos (theta)) theta = t * 360 Spherical Coordinates: rho, theta, & phi Butterfly Ball Spherical coordinates rho = 8 * t theta = 360 * t * 4 phi = - 360 * t * 8 Spherical Helix Spherical coordinates rho = 4 theta = t * 180 phi = t * 360 * 20 UFO Spherical coordinates rho = 20 * t ^ 2 theta = 60 * log (30) * t phi = 7200 * t Unnamed Spherical coordinates rho = 200 * t theta = 900 * t phi = t * 90 * 10

3. Double Arc Epicycloid Cartesian coordinate l = 2.5 b = 2.5 x = 3 * b * cos (t * 360) + l * cos (3 * t * 360) Y = 3 * b * sin (t * 360) + l * sin (3 * t * 360 ) Star Southbound Cartesian coordinate a = 5 x = a * ( cos (t * 360)) ^ 3 y = a * (sin (t * 360)) ^ 3 Leaf Cartesian coordinates a = 10 x = 3 * a * t / (1 + (t ^ 3)) y = 3 * a * (t ^ 2) / (1 + (t ^ 3)) Helix Cartesian coordinates x = 4 * cos (t * (5 * 360)) y = 4 * sin (t * (5 * 360)) z = 10 * t Parabolic Cartesian coordinates x = (4 * t) y = (3 * t) + (5 * t ^ 2) z = 0 Eliptical Helix Cartesian coordinates X = 4 * cos (t * 3 * 360) y = 2 * sin (t * 3 * 360) z = 5 Disc Spiral 1 Cartesian coordinates /* Inner Diameter d = 10 /* Pitch p = 5 /* Revolutions r = 5 /* Height; use 0 for a 2D curve h = 0 x = ((d/2 + p * r * t) * cos ((r * t) * 360)) y = ((d / 2 + p * r * t) * sin ((r * t) * 360)) z = t * h Butterfly a= cos (t*360) b=sin(t*360) c= cos (4*t*360) d=(sin((1/12)*t*360))^5 x=b*( exp (a) - 2* c+d ) y=a*( exp (a) - 2* c+d ) Fish a = cos (t * 360) b = sin (t * 360) /* As "c" increases the fish gets fatter until it transforms into a figure 8. c = 10 x = (C*a - 20*((b)^2)/1.5) y = c * a * b Cappa /* "c" is a scaling variable c=20 /* Revolutions r=1 /* Height h=0 x=c* cos (t*r*360)*sin(t*r*360) y=c* cos (t*r*360) z=t*h Star /* "a" & "b" are scaling variables a=2 b=2 /* If, r=2/3 ---- > astroid /* If, r=2 ---- > ellipse; when a=b, its a circle /* r cannot equal 1 r=2/3 x=a*( cos (t*360))^(2/r) y=b*(sin(t*360))^(2/r) z=0 Bicorn /* "c" is a scaling variable. c=5 a= cos (t*360) b=sin(t*360) x=c*a y=c*(a^2)*(2+a)/(3+b^2)

Views

  • 28 Total Views
  • 18 Website Views
  • 10 Embeded Views

Actions

  • 0 Social Shares
  • 0 Likes
  • 0 Dislikes
  • 0 Comments

Share count

  • 0 Facebook
  • 0 Twitter
  • 0 LinkedIn
  • 0 Google+

Embeds 1

  • 2 185.254.80.137